CharmVSS: Very Sparse Direct Linear Solver in Charm++

Presented by: Eric Bohm

CharmVSS

- Collaboration between CASI Corp and Charmworks Inc to produce a distributed memory very sparse direct linear solver.
 - Baseline starting point: shared memory parallel very sparse solver

Goals:

- Distributed Memory to solve problems too large for single host
- Greater parallelization to improve time to solution
- Retain factor in memory to run many RHS

CharmVSS decomposition

- Blocknodes represent contiguous rows with shared non-zero pattern
- Provide natural decomposition approach
- Grainsize too small for very sparse case as many blocknodes have small number (perhaps 1) row with a small number of nonzeros.
- Blocksets represent contiguous rows of Blocknodes
 - Controllable granularity by selecting max set size in rows, or in total number of nonzero values.

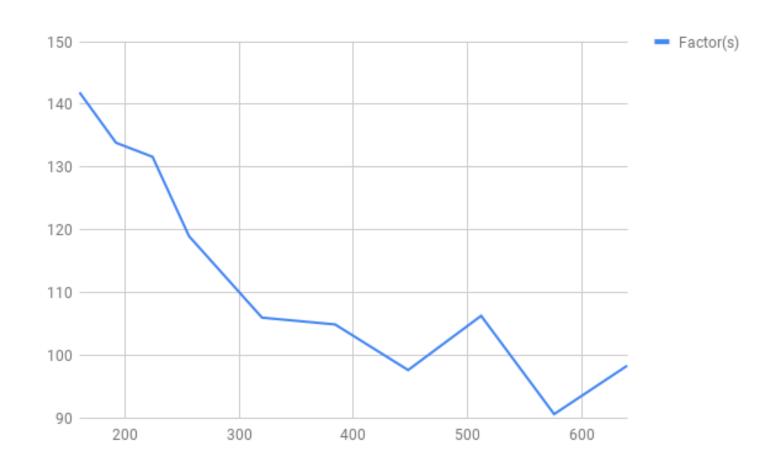
Message handling

Shared messages:

- Exposed parallelism at any stage is based on having data dependencies satisfied
- Most blocknodes have multiple upward and downward dependencies
- Therefore the data (factor or solve) can be reused by many blocksets within a node.

Message throttling:

- Factor data can be a significant fraction of host memory
- Per host credit scheme prevents the creation of a message until there is sufficient credit on the destination to hold it.
- Message deletion (when all dependents are done) restores credit


Charm++ Features in CharmVSS

- Zero copy protocol
- NodeGroup
 - Host level shared index
 - Host level shared RHS
 - Host level shared solution
- OmpCharm
 - Trigger MKL DGEMM for large blocknodes in factorization
 - Loop parallelization of beyond extent computation in backward solve
 - Evaluating MKL DDOTI vs DGTHR DDOT in solve

Performance Data

- Platform is NCSA's iForge commercial cluster normal queue
 - 64 GB per node
- Target Problem:
 - Nodes: 231580972
 - OffDiagonals: 687797827
 - Number of Separating Levels: 8
 - Indistinguishable Row Blocks: 173598430
 - Nonzeros in Upper Matrix: 9.19379e+08
 - Nonzeros in Factor: 2.31862e+10
 - Fill Ratio: 25.2194
 - Factor Index Size (MB): 11179.6
 - Factor Value Size (MB): 185490
 - Factor Size (MB): 202227

Factorization Scaling on iForge

Future work

- Improve scaling of solve
 - OpenMP + MKL
- Improve parallelization of launch
- Integrate with shared memory framework
- Multiple RHS
 - Pipeline and/or aggregate solve
- Compare to other solver codes