

CharmPy:
Charm++ with Python

Juan Galvez

What is CharmPy?

● Write Charm++
programs in Python

● Core runtme
functonality in C++

Charm++
C++ shared

library

CharmPy
module

User
program
in Python

Why Charm++ for Python?

● CharmPy specifc features
– No .ci fle
– Entry methods can receive any type of data (including

custom types) without special declaraton
– Any entry method can be target of reductons and callbacks

receiving any type of data
● No special tag, declaraton, no CkReductonMsg

– No need to use or defne Charm++ message types
– No need to write PUP (serializaton) routnes
– Streamlined and easy-to-use API

Why Charm++ for Python?

● Productvity (typically much less code)
– Python has powerful high-level language features and

extensive set of libraries
– Fast prototyping and testng

● Integraton with rich set of Python libraries
(visualizaton, numerical, scientfc, machine
learning, data sets...)

● Performance can be comparable to C/C++
depending on techniques used

Partice exampce

● 2D X × X box decomposed into
cells → 2D (m × n) chare array

● Varying number of partcles per
cell

● Each iteraton, partcles move
random distance d < cell size in
any directon

● Overdecompositon: multple cells
(chares) per core

● Load balancing every L iteratons
● Full program is one fle (97 lines)
● Runs on a supercomputer

0 1 2 ... n-1

0

1

2

...

m-1

X / m

X / n

Partice exampce

● Partcle objeects
– Will be sent between chares (no pup method needed)

● Readonlies container (global objeect)
– Objeects in container will be broadcast to all processes

after mainchare constructor. Examples:

class Particle:
 def __init__(self, x, y):
 ...

ro = readOnlies()
ro.SIM_BOX_SIZE = (100.0, 200.0)
ro.hi = “hello world”
ro.test_particle = Particle(21.2, 45.0)

Partice exampce

● Mainchare constructor

● Cell (entry method invocaton)

class Main(Mainchare):
 def __init__(self, args):
 ro.mainProxy = self.thisProxy
 ro.cellProxy = charm.CellProxy.ckNew((12,12)) # 12x12 array
 ro.cellProxy.run() # invokes ‘run’ on every cell

def run(self):
 ...
 for nb in self.neighbors: # nb is 2-tuple (elem index)
 ro.cellProxy[nb].updateNeighbor(self.iteration,
 outgoingParticles[nb])

where outgoingParticles[nb] is Python list of Particle
objects to send to neighbor nb

Partice exampce

● Entry methods and “when” construct
– Entry method invoked when frst argument equals

member variable

● Reductons

@when(“iteration”)
def updateNeighbor(self, iter, particles):

self.particles += particles
 ...

self.contribute(len(self.particles), Reducer.max,
 Main.collectStats, ro.mainProxy)

Entry method in Main class:
def collectStats(self, result): print result

Performanie

● NumPy + Numba
– Numba can compile array-oriented and math Python code
– Python can act as high-level language with critcal code

being non-interpreted (compiled)
– Numba can also generate GPU code

● CharmPy compatble with other Python interpreters
(e.g. PyPy that uses JIT)

● Easy to run C/C++ code, solutons to run Fortran code
also exist

Thank you

Questons?

git clone htps://charm.cs.illinois.edu/gerrit/charmpy

https://charm.cs.illinois.edu/gerrit/charmpy

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

