CharmPy:
Charm++ with Python

Juan Galvez

PARALLEL
M PROGRAMMING

US| [ABORATORY

What is CharmPy?

e Write Charm++
programs in Python

e Core runtime
functionality in C++

User
program

in Python

CharmPy
module

Charm—++
C++ shared
library

Why Charm++ for Python?

e CharmPy specific features

No .ci file

Entry methods can receive any type of data (including
custom types) without special declaration

Any entry method can be target of reductions and callbacks
receiving any type of data

e No special tag, declaration, no CkReductionMsg
No need to use or define Charm++ message types
No need to write PUP (serialization) routines
Streamlined and easy-to-use API

Why Charm++ for Python?

e Productivity (typically much less code)

— Python has powerful high-level language features and
extensive set of libraries

— Fast prototyping and testing

e Integration with rich set of Python libraries
(visualization, numerical, scientific, machine
learning, data sets...)

e Performance can be comparable to C/C++
depending on techniques used

Particle example

2D X x X box decomposed into
cells - 2D (m X n) chare array

Varying number of particles per
cell

Each iteration, particles move
random distance d < cell size in
any direction

Overdecomposition: multiple cells
(chares) per core

Load balancing every L iterations
Full program is one file (97 lines)

Runs on a supercomputer

m-1

n-1

X/n

X /m

Particle example

e Particle objects
— Will be sent between chares (no pup method needed)

class Particle:
def __init__(self, x, y):

e Readonlies container (global object)

— Objects in container will be broadcast to all processes
after mainchare constructor. Examples:

ro = readOnlies()

ro.SIM_BOX_SIZE = (100.0, 200.0)

ro.hi = “hello world”

ro.test_particle = Particle(21.2, 45.0)

Particle example

e Mainchare constructor

class Main(Mainchare):
def __init__(self, args):
ro.mainProxy = self.thisProxy
ro.cellProxy = charm.CellProxy.ckNew((12,12)) # 12x12 array
ro.cellProxy.run() # invokes ‘run’ on every cell

e Cell (entry method invocation)

def run(self):

for nb in self.neighbors: # nb is 2-tuple (elem index)
ro.cellProxy[nb].updateNeighbor(self.iteration,
outgoingParticles[nb])

where outgoingParticles[nb] is Python 1list of Particle
objects to send to netighbor nb

Particle example

e Entry methods and “when” construct

— Entry method invoked when first argument equals
member variable

(“i1teration”)
def updateNeighbor(self, iter, particles):
self.particles += particles

e Reductions

self.contribute(len(self.particles), Reducer.max,
Main.collectStats, ro.mainProxy)

Entry method in Main class:
def collectStats(self, result): print result

Performance

e NumPy + Numba
— Numba can compile array-oriented and math Python code

— Python can act as high-level language with critical code
being non-interpreted (compiled)

— Numba can also generate GPU code

e CharmPy compatible with other Python interpreters
(e.g. PyPy that uses JIT)

e Easy to run C/C++ code, solutions to run Fortran code
also exist

Thank you

Questions?

git clone https://charm.cs.illinois.edu/gerrit/charmpy

https://charm.cs.illinois.edu/gerrit/charmpy

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

